PA adaptive RSX

Author: © mladen, 2018
0 Views
0 Downloads
0 Favorites
PA adaptive RSX
ÿþ//------------------------------------------------------------------

#property copyright   "© mladen, 2018"

#property link        "mladenfx@gmail.com"

#property version     "1.00"

#property description "Phase accumulation adaptive RSX"

//------------------------------------------------------------------

#property indicator_separate_window

#property indicator_buffers 2

#property indicator_plots   1

#property indicator_label1  "Rsx"

#property indicator_type1   DRAW_COLOR_LINE

#property indicator_color1  clrDarkGray,clrDeepPink,clrGreen

#property indicator_width1  2



//

//--- input parameters

//



input double             inpPeriod = 1;           // PA cycles to reach

input double             inpFilter = 0;           // PA cycles filter (<=1 for no filtering)

input ENUM_APPLIED_PRICE inpPrice  = PRICE_CLOSE; // Price



//

//--- indicator buffers

//



double val[],valc[];

double ª_cycleFilter; 



//------------------------------------------------------------------ 

// Custom indicator initialization function

//------------------------------------------------------------------

int OnInit()

  {

   //--- indicator buffers mapping

         SetIndexBuffer(0,val,INDICATOR_DATA);

         SetIndexBuffer(1,valc,INDICATOR_COLOR_INDEX);

            ª_cycleFilter = (inpFilter>1) ? inpFilter : 1;

   //--- indicator short name assignment

   IndicatorSetString(INDICATOR_SHORTNAME,"Phase accumulation adaptive RSX ("+(string)inpPeriod+")");

   return (INIT_SUCCEEDED);

}



//+------------------------------------------------------------------+

//| Custom indicator de-initialization function                      |

//+------------------------------------------------------------------+

void OnDeinit(const int reason)

  {

  }

//+------------------------------------------------------------------+

//| Custom indicator iteration function                              |

//+------------------------------------------------------------------+

int OnCalculate(const int rates_total,const int prev_calculated,const datetime &time[],

                const double &open[],

                const double &high[],

                const double &low[],

                const double &close[],

                const long &tick_volume[],

                const long &volume[],

                const int &spread[])

{

   int i=(prev_calculated>0?prev_calculated-1:0); for (; i<rates_total && !_StopFlag; i++)

   {

      double _price = getPrice(inpPrice,open,close,high,low,i);

         val[i]  = iRsx(_price,iHilbertPhase(_price,ª_cycleFilter,inpPeriod,i,rates_total),i,0);

         valc[i] = (i>0) ?(val[i]>val[i-1]) ? 2 : (val[i]<val[i-1]) ? 1 : valc[i-1]: 0;

   }

   return(rates_total);

}

//+------------------------------------------------------------------+

//| Custom functions                                                 |

//+------------------------------------------------------------------+

#define _rsxInstances      1

#define _rsxInstancesSize 13

#define _rsxRingSize       6

double workRsx[_rsxRingSize][_rsxInstances*_rsxInstancesSize];

//

//---

//

double iRsx(double price, double period, int i, int instance=0)

{

   int _indC = (i)%_rsxRingSize;

   int _inst = instance*_rsxInstancesSize;

   

      workRsx[_indC][_inst]=price;

      

      //

      //---

      //



      double res = 50.0;

      if (i>0 && period>=1)

      {

         int _indP = (i-1)%_rsxRingSize;

         double Kg  = (3.0)/(2.0+period), Hg=1.0-Kg;

         double mom = workRsx[_indC][_inst]-workRsx[_indP][_inst];

         double moa = (mom<0) ? -mom : mom;

         for(int k=0,kk=_inst+1; k<3; k++,kk+=4)

         {

            workRsx[_indC][kk  ] = Kg*mom                  + Hg*workRsx[_indP][kk  ];

            workRsx[_indC][kk+1] = Kg*workRsx[_indC][kk  ] + Hg*workRsx[_indP][kk+1]; mom = 1.5*workRsx[_indC][kk  ] - 0.5 * workRsx[_indC][kk+1];

            workRsx[_indC][kk+2] = Kg*moa                  + Hg*workRsx[_indP][kk+2];

            workRsx[_indC][kk+3] = Kg*workRsx[_indC][kk+2] + Hg*workRsx[_indP][kk+3]; moa = 1.5*workRsx[_indC][kk+2] - 0.5 * workRsx[_indC][kk+3];

         }

         res = (mom/(moa>DBL_MIN?moa:DBL_MIN)+1.0)*50.0;

      }         

      else for(int k=1; k<_rsxInstancesSize; k++) workRsx[_indC][_inst+k]=0; 

   return(res>0?res<100?res:100:0);

}



//

//---

//



#define _checkArrayReserve 500

#define _checkArraySize(_arrayName,_ratesTotal)                            \

     static bool _arrayError     = false;                                  \

   { static int  _arrayResizedTo = 0;                                      \

             if (_arrayResizedTo<_ratesTotal)                              \

             {                                                             \

                  int _res = (_ratesTotal+_checkArrayReserve);             \

                      _res -= ArrayResize(_arrayName,_res);                \

                  if (_res)                                                \

                        _arrayError     = true;                            \

                  else {_arrayResizedTo = _ratesTotal+_checkArrayReserve;  \

              }}                                                           \

   }



//

//---

//

//#define _hilInstances    1

#define _hilInstanceSize 9

#ifdef  _hilInstances

      double  _workHil[][_hilInstances*_hilInstanceSize];

#else   

      double  _workHil[][_hilInstanceSize];

#endif   

double iHilbertPhase(double price, double filter, double cyclesToReach, int i,int bars, int _inst=0)

{

   _checkArraySize(_workHil,bars); if (_arrayError) return(0);

      

   //

   //---

   //



      #define _price      _inst

      #define _smooth     _inst+1

      #define _detrender  _inst+2

      #define _period     _inst+3

      #define _instPeriod _inst+4

      #define _phase      _inst+5

      #define _deltaPhase _inst+6

      #define _Q1         _inst+7

      #define _I1         _inst+8

      

      _inst              *= _hilInstanceSize;

      _workHil[i][_price] = price; 

         if (i<6) { 

                     _workHil[i][_instPeriod] = 1;

                     _workHil[i][_period]     = 1;  

                     _workHil[i][_deltaPhase] = 7;  

                     _workHil[i][_smooth]     = _workHil[i][_Q1] = _workHil[i][_I1] = price; 

                     return(1); 

                  }

                  cyclesToReach *= 360.0;



      //

      //---

      //

      

      #define _calcComp(_ind) ((0.0962*_workHil[i][_ind] + 0.5769*_workHil[i-2][_ind] - 0.5769*_workHil[i-4][_ind] - 0.0962*_workHil[i-6][_ind]) * (0.075*_workHil[i-1][_period] + 0.54))



         _workHil[i][_smooth]     = (4.0*_workHil[i][_price]+3.0*_workHil[i-1][_price]+2.0*_workHil[i-2][_price]+_workHil[i-3][_price])/10.0;

         _workHil[i][_detrender]  = _calcComp(_smooth);

         _workHil[i][_Q1]         = 0.15*_calcComp(_detrender)    +0.85*_workHil[i-1][_Q1];

         _workHil[i][_I1]         = 0.15*_workHil[i-3][_detrender]+0.85*_workHil[i-1][_I1];

         _workHil[i][_phase]      = _workHil[i-1][_phase];

         _workHil[i][_instPeriod] = _workHil[i-1][_instPeriod];



         //

         //---

         //



         if (MathAbs(_workHil[i][_I1])>0)

                     _workHil[i][_phase] = 180.0/M_PI*MathArctan(MathAbs(_workHil[i][_Q1]/_workHil[i][_I1]));

           

         if (_workHil[i][_I1]<0 && _workHil[i][_Q1]>0) _workHil[i][_phase] = 180.0-_workHil[i][_phase];

         if (_workHil[i][_I1]<0 && _workHil[i][_Q1]<0) _workHil[i][_phase] = 180.0+_workHil[i][_phase];

         if (_workHil[i][_I1]>0 && _workHil[i][_Q1]<0) _workHil[i][_phase] = 360.0-_workHil[i][_phase];



         //

         //---

         //

                        

         _workHil[i][_deltaPhase] = _workHil[i-1][_phase]-_workHil[i][_phase];



         if (_workHil[i-1][_phase]<90.0 && _workHil[i][_phase]>270.0) _workHil[i][_deltaPhase] = 360.0+_workHil[i-1][_phase]-_workHil[i][_phase];

         if (_workHil[i][_deltaPhase]>60.0) _workHil[i][_deltaPhase] = 60.0;

         if (_workHil[i][_deltaPhase]< 7.0) _workHil[i][_deltaPhase] =  7.0;

      

         //

         //---

         //

         

         double phaseSum = _workHil[i][_deltaPhase]; int k=1; for (; phaseSum<cyclesToReach && i>=k; k++) phaseSum += _workHil[i-k][_deltaPhase];

           _workHil[i][_instPeriod]= k;

           _workHil[i][_period] = _workHil[i-1][_period]+(2.0/(1.0+filter))*(_workHil[i][_instPeriod]-_workHil[i-1][_period]);

   return (_workHil[i][_period]);



   //

   //---

   //

   

   #undef _price

   #undef _smooth

   #undef _detrender

   #undef _period

   #undef _instPeriod

   #undef _phase

   #undef _deltaPhase

   #undef _Q1

   #undef _I1

}



//

//---

//

double getPrice(ENUM_APPLIED_PRICE tprice,const double &open[],const double &close[],const double &high[],const double &low[],int i)

  {

      switch(tprice)

        {

         case PRICE_CLOSE:     return(close[i]);

         case PRICE_OPEN:      return(open[i]);

         case PRICE_HIGH:      return(high[i]);

         case PRICE_LOW:       return(low[i]);

         case PRICE_MEDIAN:    return((high[i]+low[i])/2.0);

         case PRICE_TYPICAL:   return((high[i]+low[i]+close[i])/3.0);

         case PRICE_WEIGHTED:  return((high[i]+low[i]+close[i]+close[i])/4.0);

        }

   return(0);

  }

//+------------------------------------------------------------------+

Comments