Volatility_quality_Stridsman_qhistou

Author: © mladen, 2017
Price Data Components
2 Views
0 Downloads
0 Favorites
Volatility_quality_Stridsman_qhistou
ÿþ//------------------------------------------------------------------

#property copyright "© mladen, 2017"

#property link      "mladenfx@gmail.com www.forex-station.com"

//------------------------------------------------------------------

#property indicator_separate_window

#property indicator_buffers 3

#property indicator_plots   1



#property indicator_label1  "vq histogram"

#property indicator_type1   DRAW_COLOR_HISTOGRAM

#property indicator_color1  clrSilver,clrLimeGreen,clrOrange

#property indicator_width1  2

#property indicator_minimum 0

#property indicator_maximum 1

  

//

//

//

//

//



enum enPrices

{

   pr_close,      // Close

   pr_open,       // Open

   pr_high,       // High

   pr_low,        // Low

   pr_median,     // Median

   pr_typical,    // Typical

   pr_weighted,   // Weighted

   pr_average,    // Average (high+low+open+close)/4

   pr_medianb,    // Average median body (open+close)/2

   pr_tbiased,    // Trend biased price

   pr_tbiased2,   // Trend biased (extreme) price

   pr_haclose,    // Heiken ashi close

   pr_haopen ,    // Heiken ashi open

   pr_hahigh,     // Heiken ashi high

   pr_halow,      // Heiken ashi low

   pr_hamedian,   // Heiken ashi median

   pr_hatypical,  // Heiken ashi typical

   pr_haweighted, // Heiken ashi weighted

   pr_haaverage,  // Heiken ashi average

   pr_hamedianb,  // Heiken ashi median body

   pr_hatbiased,  // Heiken ashi trend biased price

   pr_hatbiased2  // Heiken ashi trend biased (extreme) price

};

enum enMaTypes

{

   ma_sma,    // Simple moving average

   ma_ema,    // Exponential moving average

   ma_smma,   // Smoothed MA

   ma_lwma    // Linear weighted MA

};



input int       PriceSmoothing         = 5;        // Price smoothing period

input enMaTypes PriceSmoothingMethod   = ma_lwma;  // Price smoothing method

input double    FilterInPips           = 2.0;      // Filter (in pips)



//

//

//

//

//



double val[],valc[],histo[];



//------------------------------------------------------------------

//

//------------------------------------------------------------------

//

//

//

//

//



int OnInit()

{

   SetIndexBuffer(0,histo,INDICATOR_DATA);

   SetIndexBuffer(1,valc ,INDICATOR_COLOR_INDEX);

   SetIndexBuffer(2,val  ,INDICATOR_DATA);

   IndicatorSetString(INDICATOR_SHORTNAME,"Volatility quality Stridsman ("+(string)PriceSmoothing+")");

   return(0);

}



void OnDeinit(const int reason) { }



//------------------------------------------------------------------

//                                                                  

//------------------------------------------------------------------

//

//

//

//

//



int OnCalculate(const int rates_total,

                const int prev_calculated,

                const datetime& time[],

                const double& open[],

                const double& high[],

                const double& low[],

                const double& close[],

                const long& tick_volume[],

                const long& volume[],

                const int& spread[])

{

   if (Bars(_Symbol,_Period)<rates_total) return(-1);



   //

   //

   //

   //

   //



   double pipMultiplier = MathPow(10,_Digits%2);

   for (int i=(int)MathMax(prev_calculated-1,0); i<rates_total; i++)

   {

      double cHigh  =         iCustomMa(PriceSmoothingMethod,high[i]   ,PriceSmoothing,i,rates_total,0);

      double cLow   =         iCustomMa(PriceSmoothingMethod,low[i]    ,PriceSmoothing,i,rates_total,1);

      double cOpen  =         iCustomMa(PriceSmoothingMethod,open[i]   ,PriceSmoothing,i,rates_total,2);

      double cClose =         iCustomMa(PriceSmoothingMethod,close[i]  ,PriceSmoothing,i,rates_total,3);

      double pClose = (i>0) ? iCustomMa(PriceSmoothingMethod,close[i-1],PriceSmoothing,i,rates_total,4) : cClose;

         

      double trueRange = MathMax(cHigh,pClose)-MathMin(cLow,pClose);

      double range     = cHigh-cLow;

      double vqi       = (range != 0 && trueRange!=0) ? ((cClose-pClose)/trueRange + (cClose-cOpen)/range)*0.5 : (i>0) ? val[i-1] : 0;



      //

      //

      //

      //

      //

         

         val[i] = (i>0) ? val[i-1]+MathAbs(vqi)*(cClose-pClose+cClose-cOpen)*0.5 : 0;

            if (FilterInPips > 0 && i>0) if (MathAbs(val[i]-val[i-1]) < FilterInPips*pipMultiplier*_Point) val[i] = val[i-1];

         valc[i]  = (i>0) ? (val[i]>val[i-1]) ? 1 : (val[i]<val[i-1]) ? 2 : valc[i-1] : 0;

         histo[i] = 1;

   }

   return(rates_total);

}

//------------------------------------------------------------------

//

//------------------------------------------------------------------

//

//

//

//

//

//



#define priceInstances 1

double workHa[][priceInstances*4];

double getPrice(int tprice, const double& open[], const double& close[], const double& high[], const double& low[], int i,int _bars, int instanceNo=0)

{

  if (tprice>=pr_haclose)

   {

      if (ArrayRange(workHa,0)!= _bars) ArrayResize(workHa,_bars); instanceNo*=4;

         

         //

         //

         //

         //

         //

         

         double haOpen;

         if (i>0)

                haOpen  = (workHa[i-1][instanceNo+2] + workHa[i-1][instanceNo+3])/2.0;

         else   haOpen  = (open[i]+close[i])/2;

         double haClose = (open[i] + high[i] + low[i] + close[i]) / 4.0;

         double haHigh  = MathMax(high[i], MathMax(haOpen,haClose));

         double haLow   = MathMin(low[i] , MathMin(haOpen,haClose));



         if(haOpen  <haClose) { workHa[i][instanceNo+0] = haLow;  workHa[i][instanceNo+1] = haHigh; } 

         else                 { workHa[i][instanceNo+0] = haHigh; workHa[i][instanceNo+1] = haLow;  } 

                                workHa[i][instanceNo+2] = haOpen;

                                workHa[i][instanceNo+3] = haClose;

         //

         //

         //

         //

         //

         

         switch (tprice)

         {

            case pr_haclose:     return(haClose);

            case pr_haopen:      return(haOpen);

            case pr_hahigh:      return(haHigh);

            case pr_halow:       return(haLow);

            case pr_hamedian:    return((haHigh+haLow)/2.0);

            case pr_hamedianb:   return((haOpen+haClose)/2.0);

            case pr_hatypical:   return((haHigh+haLow+haClose)/3.0);

            case pr_haweighted:  return((haHigh+haLow+haClose+haClose)/4.0);

            case pr_haaverage:   return((haHigh+haLow+haClose+haOpen)/4.0);

            case pr_hatbiased:

               if (haClose>haOpen)

                     return((haHigh+haClose)/2.0);

               else  return((haLow+haClose)/2.0);        

            case pr_hatbiased2:

               if (haClose>haOpen)  return(haHigh);

               if (haClose<haOpen)  return(haLow);

                                    return(haClose);        

         }

   }

   

   //

   //

   //

   //

   //

   

   switch (tprice)

   {

      case pr_close:     return(close[i]);

      case pr_open:      return(open[i]);

      case pr_high:      return(high[i]);

      case pr_low:       return(low[i]);

      case pr_median:    return((high[i]+low[i])/2.0);

      case pr_medianb:   return((open[i]+close[i])/2.0);

      case pr_typical:   return((high[i]+low[i]+close[i])/3.0);

      case pr_weighted:  return((high[i]+low[i]+close[i]+close[i])/4.0);

      case pr_average:   return((high[i]+low[i]+close[i]+open[i])/4.0);

      case pr_tbiased:   

               if (close[i]>open[i])

                     return((high[i]+close[i])/2.0);

               else  return((low[i]+close[i])/2.0);        

      case pr_tbiased2:   

               if (close[i]>open[i]) return(high[i]);

               if (close[i]<open[i]) return(low[i]);

                                     return(close[i]);        

   }

   return(0);

}



//------------------------------------------------------------------

//                                                                  

//------------------------------------------------------------------

//

//

//

//

//



#define _maInstances 5

#define _maWorkBufferx1 1*_maInstances



double iCustomMa(int mode, double price, double length, int r, int bars, int instanceNo=0)

{

   switch (mode)

   {

      case ma_sma   : return(iSma(price,(int)length,r,bars,instanceNo));

      case ma_ema   : return(iEma(price,length,r,bars,instanceNo));

      case ma_smma  : return(iSmma(price,(int)length,r,bars,instanceNo));

      case ma_lwma  : return(iLwma(price,(int)length,r,bars,instanceNo));

      default       : return(price);

   }

}



//

//

//

//

//



double workSma[][_maWorkBufferx1];

double iSma(double price, int period, int r, int _bars, int instanceNo=0)

{

   if (ArrayRange(workSma,0)!= _bars) ArrayResize(workSma,_bars); int k;



   workSma[r][instanceNo+0] = price;  

   double avg = price; for(k=1; k<period && (r-k)>=0; k++) avg += workSma[r-k][instanceNo+0];  

   return(avg/k);

}



//

//

//

//

//



double workEma[][_maWorkBufferx1];

double iEma(double price, double period, int r, int _bars, int instanceNo=0)

{

   if (ArrayRange(workEma,0)!= _bars) ArrayResize(workEma,_bars);



   workEma[r][instanceNo] = price;

   if (r>0 && period>1)

          workEma[r][instanceNo] = workEma[r-1][instanceNo]+(2.0/(1.0+period))*(price-workEma[r-1][instanceNo]);

   return(workEma[r][instanceNo]);

}



//

//

//

//

//



double workSmma[][_maWorkBufferx1];

double iSmma(double price, double period, int r, int _bars, int instanceNo=0)

{

   if (ArrayRange(workSmma,0)!= _bars) ArrayResize(workSmma,_bars);



   workSmma[r][instanceNo] = price;

   if (r>1 && period>1)

          workSmma[r][instanceNo] = workSmma[r-1][instanceNo]+(price-workSmma[r-1][instanceNo])/period;

   return(workSmma[r][instanceNo]);

}



//

//

//

//

//



double workLwma[][_maWorkBufferx1];

double iLwma(double price, double period, int r, int _bars, int instanceNo=0)

{

   if (ArrayRange(workLwma,0)!= _bars) ArrayResize(workLwma,_bars);

   

   workLwma[r][instanceNo] = price; if (period<=1) return(price);

      double sumw = period;

      double sum  = period*price;



      for(int k=1; k<period && (r-k)>=0; k++)

      {

         double weight = period-k;

                sumw  += weight;

                sum   += weight*workLwma[r-k][instanceNo];  

      }             

      return(sum/sumw);

}

Comments

Markdown supported. Formatting help

Markdown Formatting Guide

Element Markdown Syntax
Heading # H1
## H2
### H3
Bold **bold text**
Italic *italicized text*
Link [title](https://www.example.com)
Image ![alt text](image.jpg)
Code `code`
Code Block ```
code block
```
Quote > blockquote
Unordered List - Item 1
- Item 2
Ordered List 1. First item
2. Second item
Horizontal Rule ---