smoother_std_adaptive_4

Author: mladen @ mladenfx@gmail.com
Price Data Components
0 Views
0 Downloads
0 Favorites
smoother_std_adaptive_4
//------------------------------------------------------------------
#property copyright "mladen @ mladenfx@gmail.com"
#property link      "www.forex-station.com"
//------------------------------------------------------------------
#property indicator_chart_window
#property indicator_buffers 2
#property indicator_plots   1
#property indicator_label1  "Smoother std adaptive"
#property indicator_type1   DRAW_COLOR_LINE
#property indicator_color1  clrLimeGreen,clrOrange
#property indicator_style1  STYLE_SOLID
#property indicator_width1  2

//
//
//
//
//

enum enPrices
{
   pr_close,      // Close
   pr_open,       // Open
   pr_high,       // High
   pr_low,        // Low
   pr_median,     // Median
   pr_typical,    // Typical
   pr_weighted,   // Weighted
   pr_average,    // Average (high+low+open+close)/4
   pr_medianb,    // Average median body (open+close)/2
   pr_tbiased,    // Trend biased price
   pr_tbiased2,   // Trend biased (extreme) price
   pr_haclose,    // Heiken ashi close
   pr_haopen ,    // Heiken ashi open
   pr_hahigh,     // Heiken ashi high
   pr_halow,      // Heiken ashi low
   pr_hamedian,   // Heiken ashi median
   pr_hatypical,  // Heiken ashi typical
   pr_haweighted, // Heiken ashi weighted
   pr_haaverage,  // Heiken ashi average
   pr_hamedianb,  // Heiken ashi median body
   pr_hatbiased,  // Heiken ashi trend biased price
   pr_hatbiased2  // Heiken ashi trend biased (extreme) price
};
enum enStdMethods
{
   std_custSam, // Custom - with sample correction
   std_custNos  // Custom - without sample correction
};

input double       SmtPeriod      = 15;           // Calculation period
input enPrices     Price          = pr_close;     // Price to use
input int          AdaptivePeriod = 25;           // Period for adapting
input enStdMethods DeviationType  = std_custSam;  // Deviation calculation type
input int          ColorSteps     = 50;           // Color steps for drawing
input color        ColorFrom      = clrOrange;    // Color down
input color        ColorTo        = clrLime;      // Color Up

double smt[],colorBuffer[];
int cSteps;

//------------------------------------------------------------------
//
//------------------------------------------------------------------
//
//
//
//
//

int OnInit()
{
   SetIndexBuffer(0,smt,INDICATOR_DATA); 
   SetIndexBuffer(1,colorBuffer,INDICATOR_COLOR_INDEX); 
   cSteps = (ColorSteps>1) ? ColorSteps : 2;
      PlotIndexSetInteger(0,PLOT_COLOR_INDEXES,cSteps+1);
      for (int i=0;i<cSteps+1;i++) 
               PlotIndexSetInteger(0,PLOT_LINE_COLOR,i,gradientColor(i,cSteps+1,ColorFrom,ColorTo));
   return(0);
}

//------------------------------------------------------------------
//
//------------------------------------------------------------------
//
//
//
//
//

int OnCalculate(const int rates_total,
                const int prev_calculated,
                const datetime& time[],
                const double& open[],
                const double& high[],
                const double& low[],
                const double& close[],
                const long& tick_volume[],
                const long& volume[],
                const int& spread[])
{
   if (Bars(_Symbol,_Period)<rates_total) return(-1);

   //
   //
   //
   //
   //

   int i=(int)MathMax(prev_calculated-1,0); for (; i<rates_total && !_StopFlag; i++)
   {
     double price  = getPrice(Price,open,close,high,low,i,rates_total);
     double dev    = iDeviation(price,AdaptivePeriod,DeviationType==std_custSam,i,rates_total);
     double avg    = iSma(dev,AdaptivePeriod,rates_total,i,1);
     double period = (dev!=0) ? MathMax(SmtPeriod*avg/dev,2) : MathMax(SmtPeriod,1);

         //
         //
         //
         //
         //
           
         smt[i] = iSmooth(price,period,i,rates_total,0);   
            int start = MathMax(i-ColorSteps+1,0);
                double min = smt[ArrayMinimum(smt,start,ColorSteps)];
                double max = smt[ArrayMaximum(smt,start,ColorSteps)];
                double col = (max-min)!=0 ? 100*(smt[i]-min)/(max-min) : 50;
         colorBuffer[i] = MathFloor(col*cSteps/100.0);                                  
   }
   return(i);
}


//------------------------------------------------------------------
//                                                                  
//------------------------------------------------------------------
//
//
//
//
//


double workDev[];
double iDeviation(double value, int length, bool isSample, int i, int bars)
{
   if (ArraySize(workDev)!=bars) ArrayResize(workDev,bars); workDev[i] = value;
                 
   //
   //
   //
   //
   //
   
      double oldMean   = value;
      double newMean   = value;
      double squares   = 0; int k;
      for (k=1; k<length && (i-k)>=0; k++)
      {
         newMean  = (workDev[i-k]-oldMean)/(k+1)+oldMean;
         squares += (workDev[i-k]-oldMean)*(workDev[i-k]-newMean);
         oldMean  = newMean;
      }
      return(MathSqrt(squares/MathMax(k-isSample,1)));
}

//
//
//
//
//

double workSma[][4];
double iSma(double price, int period, int totalBars, int r, int instanceNo=0)
{
   if (ArrayRange(workSma,0)!= totalBars) ArrayResize(workSma,totalBars); instanceNo *= 2;

   //
   //
   //
   //
   //

   int k;      
   workSma[r][instanceNo] = price;
   if (r>=period)
          workSma[r][instanceNo+1] = workSma[r-1][instanceNo+1]+(workSma[r][instanceNo]-workSma[r-period][instanceNo])/period;
   else { workSma[r][instanceNo+1] = 0; for(k=0; k<period && (r-k)>=0; k++) workSma[r][instanceNo+1] += workSma[r-k][instanceNo];  
          workSma[r][instanceNo+1] /= k; }
   return(workSma[r][instanceNo+1]);
}

//
//
//
//
//

double workSmooth[][5];
double iSmooth(double price,double length,int r, int bars, int instanceNo=0)
{
   if (ArrayRange(workSmooth,0)!=bars) ArrayResize(workSmooth,bars); instanceNo *= 5;
 	if(r<=2) { workSmooth[r][instanceNo] = price; workSmooth[r][instanceNo+2] = price; workSmooth[r][instanceNo+4] = price; return(price); }
   
   //
   //
   //
   //
   //
   
	double alpha = 0.45*(length-1.0)/(0.45*(length-1.0)+2.0);
   	  workSmooth[r][instanceNo+0] =  price+alpha*(workSmooth[r-1][instanceNo]-price);
	     workSmooth[r][instanceNo+1] = (price - workSmooth[r][instanceNo])*(1-alpha)+alpha*workSmooth[r-1][instanceNo+1];
	     workSmooth[r][instanceNo+2] =  workSmooth[r][instanceNo+0] + workSmooth[r][instanceNo+1];
	     workSmooth[r][instanceNo+3] = (workSmooth[r][instanceNo+2] - workSmooth[r-1][instanceNo+4])*MathPow(1.0-alpha,2) + MathPow(alpha,2)*workSmooth[r-1][instanceNo+3];
	     workSmooth[r][instanceNo+4] =  workSmooth[r][instanceNo+3] + workSmooth[r-1][instanceNo+4]; 
   return(workSmooth[r][instanceNo+4]);
}



//------------------------------------------------------------------
//
//------------------------------------------------------------------
//
//
//
//
//
//

#define _pricesInstances 3
#define _pricesSize      4
double workHa[][_pricesInstances*_pricesSize];
double getPrice(int tprice, const double& open[], const double& close[], const double& high[], const double& low[], int i,int _bars, int instanceNo=0)
{
  if (tprice>=pr_haclose)
   {
      if (ArrayRange(workHa,0)!= _bars) ArrayResize(workHa,_bars); instanceNo*=_pricesSize;
         
         //
         //
         //
         //
         //
         
         double haOpen;
         if (i>0)
                haOpen  = (workHa[i-1][instanceNo+2] + workHa[i-1][instanceNo+3])/2.0;
         else   haOpen  = (open[i]+close[i])/2;
         double haClose = (open[i] + high[i] + low[i] + close[i]) / 4.0;
         double haHigh  = MathMax(high[i], MathMax(haOpen,haClose));
         double haLow   = MathMin(low[i] , MathMin(haOpen,haClose));

         if(haOpen  <haClose) { workHa[i][instanceNo+0] = haLow;  workHa[i][instanceNo+1] = haHigh; } 
         else                 { workHa[i][instanceNo+0] = haHigh; workHa[i][instanceNo+1] = haLow;  } 
                                workHa[i][instanceNo+2] = haOpen;
                                workHa[i][instanceNo+3] = haClose;
         //
         //
         //
         //
         //
         
         switch (tprice)
         {
            case pr_haclose:     return(haClose);
            case pr_haopen:      return(haOpen);
            case pr_hahigh:      return(haHigh);
            case pr_halow:       return(haLow);
            case pr_hamedian:    return((haHigh+haLow)/2.0);
            case pr_hamedianb:   return((haOpen+haClose)/2.0);
            case pr_hatypical:   return((haHigh+haLow+haClose)/3.0);
            case pr_haweighted:  return((haHigh+haLow+haClose+haClose)/4.0);
            case pr_haaverage:   return((haHigh+haLow+haClose+haOpen)/4.0);
            case pr_hatbiased:
               if (haClose>haOpen)
                     return((haHigh+haClose)/2.0);
               else  return((haLow+haClose)/2.0);        
            case pr_hatbiased2:
               if (haClose>haOpen)  return(haHigh);
               if (haClose<haOpen)  return(haLow);
                                    return(haClose);        
         }
   }
   
   //
   //
   //
   //
   //
   
   switch (tprice)
   {
      case pr_close:     return(close[i]);
      case pr_open:      return(open[i]);
      case pr_high:      return(high[i]);
      case pr_low:       return(low[i]);
      case pr_median:    return((high[i]+low[i])/2.0);
      case pr_medianb:   return((open[i]+close[i])/2.0);
      case pr_typical:   return((high[i]+low[i]+close[i])/3.0);
      case pr_weighted:  return((high[i]+low[i]+close[i]+close[i])/4.0);
      case pr_average:   return((high[i]+low[i]+close[i]+open[i])/4.0);
      case pr_tbiased:   
               if (close[i]>open[i])
                     return((high[i]+close[i])/2.0);
               else  return((low[i]+close[i])/2.0);        
      case pr_tbiased2:   
               if (close[i]>open[i]) return(high[i]);
               if (close[i]<open[i]) return(low[i]);
                                     return(close[i]);        
   }
   return(0);
}

//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
//
//
//
//
//

color getColor(int stepNo, int totalSteps, color from, color to)
{
   double stes = (double)totalSteps-1.0;
   double step = (from-to)/(stes);
   return((color)round(from-step*stepNo));
}
color gradientColor(int step, int totalSteps, color from, color to)
{
   color newBlue  = getColor(step,totalSteps,(from & 0XFF0000)>>16,(to & 0XFF0000)>>16)<<16;
   color newGreen = getColor(step,totalSteps,(from & 0X00FF00)>> 8,(to & 0X00FF00)>> 8) <<8;
   color newRed   = getColor(step,totalSteps,(from & 0X0000FF)    ,(to & 0X0000FF)    )    ;
   return(newBlue+newGreen+newRed);
}

Comments

Markdown supported. Formatting help

Markdown Formatting Guide

Element Markdown Syntax
Heading # H1
## H2
### H3
Bold **bold text**
Italic *italicized text*
Link [title](https://www.example.com)
Image ![alt text](image.jpg)
Code `code`
Code Block ```
code block
```
Quote > blockquote
Unordered List - Item 1
- Item 2
Ordered List 1. First item
2. Second item
Horizontal Rule ---