//+------------------------------------------------------------------+
//| Schnick.mq5 |
//| Copyright 2011, MetaQuotes Software Corp. |
//| http://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2011, MetaQuotes Software Corp."
#property link "http://www.mql5.com"
#property version "1.00"
//+------------------------------------------------------------------+
//| This script demonstrates the capabilities of the Support Vector
//| Machine Learning Tool
//+------------------------------------------------------------------+
//+------------------------------------------------------------------+
//| The following statement imports all of the functions included in
//| the Support Vector Machine Tool 'svMachineTool.ex5'
//+------------------------------------------------------------------+
#import "svMachineTool.ex5"
enum ENUM_TRADE {BUY,SELL};
enum ENUM_OPTION {OP_MEMORY,OP_MAXCYCLES,OP_TOLERANCE};
int initSVMachine(void);
void setIndicatorHandles(int handle,int &indicatorHandles[],int offset,int N);
void setParameter(int handle,ENUM_OPTION option,double value);
bool genOutputs(int handle,ENUM_TRADE trade,int StopLoss,int TakeProfit,double duration);
bool genInputs(int handle);
bool setInputs(int handle,double &Inputs[],int nInputs);
bool setOutputs(int handle,bool &Outputs[]);
bool training(int handle);
bool classify(int handle);
bool classify(int handle,int offset);
bool classify(int handle,double &iput[]);
void deinitSVMachine(void);
#import
//--- The number of inputs we will be using for the svm
int N_Inputs=7;
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void OnStart()
{
double inputs[]; //empty double array to be used for creating training inputs
bool outputs[]; //empty bool array to be used for creating training inputs
int N_TrainingPoints=5000; //defines the number of training samples to be generated
int N_TestPoints=5000; //defines the number of samples to used when testing
genTrainingData(inputs,outputs,N_TrainingPoints); //generates the inputs and outputs to be used for training the svm
int handle1=initSVMachine(); //initializes a new support vector machine and returns a handle
setInputs(handle1,inputs,7); //passes the inputs (without errors) to the support vector machine
setOutputs(handle1,outputs); //passes the outputs (without errors) to the support vector machine
setParameter(handle1,OP_TOLERANCE,0.01); //sets the error tolerance parameter to <5%
training(handle1); //trains the support vector machine using the inputs/outputs passed
insertRandomErrors(inputs,outputs,500); //takes the original inputs/outputs generated and adds random errors to the data
int handle2=initSVMachine(); //initializes a new support vector machine and returns a handle
setInputs(handle2,inputs,7); //passes the inputs (with errors) to the support vector machine
setOutputs(handle2,outputs); //passes the outputs (with errors) to the support vector machine
setParameter(handle2,OP_TOLERANCE,0.01); //sets the error tolerance parameter to <5%
training(handle2); //trains the support vector machine using the inputs/outputs passed
double t1=testSVM(handle1,N_TestPoints); //tests the accuracy of the trained support vector machine and saves it to t1
double t2=testSVM(handle2,N_TestPoints); //tests the accuracy of the trained support vector machine and saves it to t2
Print("The SVM accuracy is ",NormalizeDouble(t1,2),"% (using training inputs/outputs without errors)");
Print("The SVM accuracy is ",NormalizeDouble(t2,2),"% (using training inputs/outputs with errors)");
deinitSVMachine(); //Cleans up all of the memory used in generating the SVM to avoid memory leakage
}
//+------------------------------------------------------------------+
//| This function takes the observation properties of the observed
//| animal and based on the critera we have chosen, returns
//| true/false whether it is a schnick
//+------------------------------------------------------------------+
bool isItASchnick(double height,double weight,double N_legs,double N_eyes,double L_arm,double av_speed,double f_call)
{
if(height < 1000 || height > 1100) return(false); //If the height is outside the parameters > return(false)
if(weight < 40 || weight > 50) return(false); //If the weight is outside the parameters > return(false)
if(N_legs < 8 || N_legs > 10) return(false); //If the N_Legs is outside the parameters > return(false)
if(N_eyes < 3 || N_eyes > 4) return(false); //If the N_eyes is outside the parameters > return(false)
if(L_arm < 400 || L_arm > 450) return(false); //If the L_arm is outside the parameters > return(false)
if(av_speed < 2 || av_speed > 2.5) return(false); //If the av_speed is outside the parameters > return(false)
if(f_call < 11000 || f_call > 15000) return(false); //If the f_call is outside the parameters > return(false)
return(true); //Otherwise > return(true)
}
//+------------------------------------------------------------------+
//| This function takes an empty double array and empty boolean array
//| and generates the inputs/outputs to be used for training the SVM
//+------------------------------------------------------------------+
void genTrainingData(double &inputs[],bool &outputs[],int N)
{
double in[]; //creates an empty double array to be used
//for temporarily storing the inputs generated
ArrayResize(in,N_Inputs); //resize the in[] array to N_Inputs
ArrayResize(inputs,N*N_Inputs); //resize the inputs[] array to have a size of N*N_Inputs
ArrayResize(outputs,N); //resize the outputs[] array to have a size of N
for(int i=0;i<N;i++)
{
in[0]= randBetween(980,1120); //Random input generated for height
in[1]= randBetween(38,52); //Random input generated for weight
in[2]= randBetween(7,11); //Random input generated for N_legs
in[3]= randBetween(3,4.2); //Random input generated for N_eyes
in[4]= randBetween(380,450); //Random input generated for L_arms
in[5]= randBetween(2,2.6); //Random input generated for av_speed
in[6]= randBetween(10500,15500); //Random input generated for f_call
//--- copy the new random inputs generated into the training input array
ArrayCopy(inputs,in,i*N_Inputs,0,N_Inputs);
//--- assess the random inputs and determine if it is a schnick
outputs[i]=isItASchnick(in[0],in[1],in[2],in[3],in[4],in[5],in[6]);
}
}
//+------------------------------------------------------------------+
//| This function takes the handle for the trained SVM and tests how
//| successful it is at classifying new random inputs
//+------------------------------------------------------------------+
double testSVM(int handle,int N)
{
double in[];
int atrue=0;
int afalse=0;
int N_correct=0;
bool Predicted_Output;
bool Actual_Output;
ArrayResize(in,N_Inputs);
for(int i=0;i<N;i++)
{
in[0]= randBetween(980,1120); //Random input generated for height
in[1]= randBetween(38,52); //Random input generated for weight
in[2]= randBetween(7,11); //Random input generated for N_legs
in[3]= randBetween(3,4.2); //Random input generated for N_eyes
in[4]= randBetween(380,450); //Random input generated for L_arms
in[5]= randBetween(2,2.6); //Random input generated for av_speed
in[6]= randBetween(10500,15500); //Random input generated for f_call
//--- uses the isItASchnick fcn to determine the actual desired output
Actual_Output=isItASchnick(in[0],in[1],in[2],in[3],in[4],in[5],in[6]);
//--- uses the trained SVM to return the prediced output.
Predicted_Output=classify(handle,in);
if(Actual_Output==Predicted_Output)
{
N_correct++; //This statement keeps count of the number of times the predicted output is correct.
}
}
//--- returns the accuracy of the trained SVM as a percentage
return(100*((double)N_correct/(double)N));
}
//+------------------------------------------------------------------+
//| This function takes the correct training inputs and outputs
//| generated and inserts N random errors into the data
//+------------------------------------------------------------------+
void insertRandomErrors(double &inputs[],bool &outputs[],int N)
{
int nTrainingPoints=ArraySize(outputs); //calculates the number of training points
int index; //creates new integer 'index'
bool randomOutput; //creates new bool 'randomOutput'
double in[]; //creates an empty double array to be used
//for temporarily storing the inputs generated
ArrayResize(in,N_Inputs); //resize the in[] array to N_Inputs
for(int i=0;i<N;i++)
{
in[0]= randBetween(980,1120); //Random input generated for height
in[1]= randBetween(38,52); //Random input generated for weight
in[2]= randBetween(7,11); //Random input generated for N_legs
in[3]= randBetween(3,4.2); //Random input generated for N_eyes
in[4]= randBetween(380,450); //Random input generated for L_arms
in[5]= randBetween(2,2.6); //Random input generated for av_speed
in[6]= randBetween(10500,15500); //Random input generated for f_call
//--- randomly chooses one of the training inputs to insert an error
index=(int)MathRound(randBetween(0,nTrainingPoints-1));
//--- generates a random boolean output to be used to create error
if(randBetween(0,1)>0.5) randomOutput=true;
else randomOutput=false;
//--- copy the new random inputs generated into the training input array
ArrayCopy(inputs,in,index*N_Inputs,0,N_Inputs);
//--- copy the new random output generated into the training output array
outputs[index]=randomOutput;
}
}
//+------------------------------------------------------------------+
//| This function is used to create a random value between t1 and t2
//+------------------------------------------------------------------+
double randBetween(double t1,double t2)
{
return((t2-t1)*((double)MathRand()/(double)32767)+t1);
}
//+------------------------------------------------------------------+
Comments