Phase change index - JMA

Author: mladen
Price Data Components
0 Views
0 Downloads
0 Favorites
Phase change index - JMA
ÿþ//+------------------------------------------------------------------

#property copyright   "mladen"

#property link        "mladenfx@gmail.com"

#property description "Phase change index - JMA smoothed"

//+------------------------------------------------------------------

#property indicator_separate_window

#property indicator_buffers 6

#property indicator_plots   2

#property indicator_label1  "Phase change trend zone"

#property indicator_type1   DRAW_FILLING

#property indicator_color1  clrGainsboro,clrGainsboro

#property indicator_label2  "Phase change index"

#property indicator_type2   DRAW_COLOR_LINE

#property indicator_color2  clrDarkGray,clrSandyBrown,clrDeepSkyBlue

#property indicator_width2  2

//

//--- input parameters

//

enum enInverted 

{

   inv_regular, // Display regular value

   inv_inverted // Display inverted value

};

enum enSmoothType

{

   smt_pre,  // Smooth prices only

   smt_val,  // Smooth phase change index only

   smt_all   // Smooth both price and phase change index

};

input int                inpLength     = 30;           // Phase change index period

input ENUM_APPLIED_PRICE inpPrice      = PRICE_CLOSE;  // Price

input double             inpSmooth     = 5;            // Smoothing period

input enSmoothType       inpSmoothType = smt_val;      // Smoothing type

input double             inpLevelHigh  = 80;           // Level high

input double             inpLevelLow   = 20;           // Level low

input enInverted         inpInverted   = inv_inverted; // Display type

//

//--- buffers and global variables declarations

//

double val[],valc[],levup[],levdn[],prices[],state[];

string _smtModes[] = {"price","value","price and value"};

//+------------------------------------------------------------------+

//| Custom indicator initialization function                         |

//+------------------------------------------------------------------+

int OnInit()

  {

//--- indicator buffers mapping

   SetIndexBuffer(0,levup,INDICATOR_DATA);

   SetIndexBuffer(1,levdn,INDICATOR_DATA);

   SetIndexBuffer(2,val,INDICATOR_DATA);

   SetIndexBuffer(3,valc,INDICATOR_COLOR_INDEX);

   SetIndexBuffer(4,prices,INDICATOR_CALCULATIONS);

   SetIndexBuffer(5,state,INDICATOR_CALCULATIONS);

   IndicatorSetInteger(INDICATOR_LEVELS,2);

   IndicatorSetDouble(INDICATOR_LEVELVALUE,0,inpLevelHigh);

   IndicatorSetDouble(INDICATOR_LEVELVALUE,1,inpLevelLow);

//---

   IndicatorSetString(INDICATOR_SHORTNAME,"Phase change index "+_smtModes[inpSmoothType]+" smoothed ("+(string)inpLength+")");

   return (INIT_SUCCEEDED);

  }

//+------------------------------------------------------------------+

//| Custom indicator de-initialization function                      |

//+------------------------------------------------------------------+

void OnDeinit(const int reason)

  {

  }

//+------------------------------------------------------------------+

//| Custom indicator iteration function                              |

//+------------------------------------------------------------------+

int OnCalculate(const int rates_total,

                const int prev_calculated,

                const datetime &time[],

                const double &open[],

                const double &high[],

                const double &low[],

                const double &close[],

                const long &tick_volume[],

                const long &volume[],

                const int &spread[])

  {

   if(Bars(_Symbol,_Period)<rates_total) return(prev_calculated);

   double _smoothP = (inpSmoothType==smt_val) ? 0 : inpSmooth;

   double _smoothV = (inpSmoothType==smt_pre) ? 0 : inpSmooth;

   int i=(int)MathMax(prev_calculated-1,0); for(; i<rates_total && !_StopFlag; i++)

     {

      prices[i] = iSmooth(getPrice(inpPrice,open,close,high,low,i,rates_total),_smoothP,0,i,rates_total,0);

      //

      //---

      //

      double momentum = (i>=inpLength) ? prices[i]-prices[i-inpLength] : 0;

      double sumUpDi  = 0;

      double sumDnDi  = 0;

      for(int j=1; j<inpLength && (i-j)>=0 && (i-inpLength)>=0; j++)

      {

         double gradient  = prices[i-inpLength]+momentum*(inpLength-j)/(inpLength);

         double deviation = prices[i-j]-gradient;

            if (deviation > 0)

                  sumUpDi += deviation;

            else  sumDnDi -= deviation;

      }                    

      val[i]   = iSmooth(((sumUpDi+sumDnDi)!=0 ? 100.0*sumUpDi/(sumUpDi+sumDnDi) : 0),_smoothV,0,i,rates_total,1); if (inpInverted==inv_inverted) val[i] = 100-val[i];

      levdn[i] = 50;

      levup[i] = (val[i]>inpLevelHigh) ? 100: (val[i]<inpLevelLow) ? 0 : 50;

      valc[i]  = (val[i]>inpLevelHigh) ? 2 : (val[i]<inpLevelLow) ? 1 : 0;

     }

   return (i);

  }

//+------------------------------------------------------------------+

//| Custom functions                                                 |

//+------------------------------------------------------------------+

#define _smoothInstances     2

#define _smoothInstancesSize 10

double m_wrk[][_smoothInstances*_smoothInstancesSize];

int    m_size=0;

//

//---

//

double iSmooth(double price,double length,double phase,int r,int bars,int instanceNo=0)

  {

   #define bsmax  5

   #define bsmin  6

   #define volty  7

   #define vsum   8

   #define avolty 9



   if(ArrayRange(m_wrk,0)!=bars) ArrayResize(m_wrk,bars); if(ArrayRange(m_wrk,0)!=bars) return(price); instanceNo*=_smoothInstancesSize;

   if(r==0 || length<=1) { int k=0; for(; k<7; k++) m_wrk[r][instanceNo+k]=price; for(; k<10; k++) m_wrk[r][instanceNo+k]=0; return(price); }



//

//---

//



   double len1   = MathMax(MathLog(MathSqrt(0.5*(length-1)))/MathLog(2.0)+2.0,0);

   double pow1   = MathMax(len1-2.0,0.5);

   double del1   = price - m_wrk[r-1][instanceNo+bsmax];

   double del2   = price - m_wrk[r-1][instanceNo+bsmin];

   int    forBar = MathMin(r,10);



   m_wrk[r][instanceNo+volty]=0;

   if(MathAbs(del1) > MathAbs(del2)) m_wrk[r][instanceNo+volty] = MathAbs(del1);

   if(MathAbs(del1) < MathAbs(del2)) m_wrk[r][instanceNo+volty] = MathAbs(del2);

   m_wrk[r][instanceNo+vsum]=m_wrk[r-1][instanceNo+vsum]+(m_wrk[r][instanceNo+volty]-m_wrk[r-forBar][instanceNo+volty])*0.1;



//

//---

//



   m_wrk[r][instanceNo+avolty]=m_wrk[r-1][instanceNo+avolty]+(2.0/(MathMax(4.0*length,30)+1.0))*(m_wrk[r][instanceNo+vsum]-m_wrk[r-1][instanceNo+avolty]);

   double dVolty=(m_wrk[r][instanceNo+avolty]>0) ? m_wrk[r][instanceNo+volty]/m_wrk[r][instanceNo+avolty]: 0;

   if(dVolty > MathPow(len1,1.0/pow1)) dVolty = MathPow(len1,1.0/pow1);

   if(dVolty < 1)                      dVolty = 1.0;



//

//---

//



   double pow2 = MathPow(dVolty, pow1);

   double len2 = MathSqrt(0.5*(length-1))*len1;

   double Kv   = MathPow(len2/(len2+1), MathSqrt(pow2));



   if(del1 > 0) m_wrk[r][instanceNo+bsmax] = price; else m_wrk[r][instanceNo+bsmax] = price - Kv*del1;

   if(del2 < 0) m_wrk[r][instanceNo+bsmin] = price; else m_wrk[r][instanceNo+bsmin] = price - Kv*del2;



//

//---

//



   double corr  = MathMax(MathMin(phase,100),-100)/100.0 + 1.5;

   double beta  = 0.45*(length-1)/(0.45*(length-1)+2);

   double alpha = MathPow(beta,pow2);



   m_wrk[r][instanceNo+0] = price + alpha*(m_wrk[r-1][instanceNo+0]-price);

   m_wrk[r][instanceNo+1] = (price - m_wrk[r][instanceNo+0])*(1-beta) + beta*m_wrk[r-1][instanceNo+1];

   m_wrk[r][instanceNo+2] = (m_wrk[r][instanceNo+0] + corr*m_wrk[r][instanceNo+1]);

   m_wrk[r][instanceNo+3] = (m_wrk[r][instanceNo+2] - m_wrk[r-1][instanceNo+4])*MathPow((1-alpha),2) + MathPow(alpha,2)*m_wrk[r-1][instanceNo+3];

   m_wrk[r][instanceNo+4] = (m_wrk[r-1][instanceNo+4] + m_wrk[r][instanceNo+3]);



//

//---

//



   return(m_wrk[r][instanceNo+4]);



   #undef bsmax

   #undef bsmin

   #undef volty

   #undef vsum

   #undef avolty

  }    

//

//---

//

double getPrice(ENUM_APPLIED_PRICE tprice,const double &open[],const double &close[],const double &high[],const double &low[],int i,int _bars)

  {

   switch(tprice)

     {

      case PRICE_CLOSE:     return(close[i]);

      case PRICE_OPEN:      return(open[i]);

      case PRICE_HIGH:      return(high[i]);

      case PRICE_LOW:       return(low[i]);

      case PRICE_MEDIAN:    return((high[i]+low[i])/2.0);

      case PRICE_TYPICAL:   return((high[i]+low[i]+close[i])/3.0);

      case PRICE_WEIGHTED:  return((high[i]+low[i]+close[i]+close[i])/4.0);

     }

   return(0);

  }

//+------------------------------------------------------------------+

Comments

Markdown supported. Formatting help

Markdown Formatting Guide

Element Markdown Syntax
Heading # H1
## H2
### H3
Bold **bold text**
Italic *italicized text*
Link [title](https://www.example.com)
Image ![alt text](image.jpg)
Code `code`
Code Block ```
code block
```
Quote > blockquote
Unordered List - Item 1
- Item 2
Ordered List 1. First item
2. Second item
Horizontal Rule ---