//+------------------------------------------------------------------+
//| Michelangelo.mq4 |
//| Copyright © 2005, Matt Kennel |
//| |
//| |
//| Algorithm: Apply a H/L indicator like SMI, avg'd w/ power law |
//| lengths. Then apply a Kaufman AMA filter. |
//| Then a 'signal' EMA. Use crossover of this as |
//| potential trading signal. |
//| |
//| Idea: Try to stay on the side of a trend but reverse |
//| quickly if there is a breakout. KaufmanAMA can |
//| be made sensitive to those. |
//| |
//+------------------------------------------------------------------+
#property copyright "Copyright © 2005, Matt Kennel"
#property link "http://www.metatrader.org"
//----
#property indicator_separate_window
#property indicator_buffers 2
#property indicator_color1 White
#property indicator_color2 Red
#property indicator_level1 0
//---- input parameters
// Try these on M30 charts on trendy currencies.
// THESE PARAMETERS ARE NOT OPTIMIZED BY ANY MEANS.
//
// Brief run-down. Structure is derived from "SMI" indicator.
//
// The first part, minkernel, maxkernel, and exponent
// correspond to the power-law averaging of relative position of self to
// highs and lows. The underlying statistic is sort of like a "stochastic",
// the purpose of the averaging is to not be as dependent on a single, fixed lookback.
//
// The relative position and range series (kept separate here) are each subjected
// to a Kaufman adaptive moving average. This AMA computes an internal 'signal to noise'
// ratio to see if it is choppy (no consistent trend), in which case the smoothing is strong
// and laggy, or if it feels like a continuing trend, in which case the smoothing is light
// and fast. Parameters here are "periodAMA", which is the lookback for S/N, nfast, and nslow
// which control the range between fastest and slowest smoothing, and "G". This is an exponent
// which, for larger values than '1', more greatly emphasize the high S/N versus low. In practice,
// this means that for larger 'G', there are more flat periods, and then more sensitive to breakouts.
//
// After the KaufmanAMA filtering, the two series are
// "predictively EMA filtered" (similar to a Hull MA), with parameter Period_R,
// and then divided to form the main indicator line in white.
//
// Finally, this indicator line is filtered with a conventional EMA with period 'Signal'
// to give the red signal line. Trading signals are generally a crossover of white
// with red, with the slope of the white in the proper direction. This will probably
// require intra-bar consideration for breakouts when used in real-time trading.
//
// Best nutshell description is "a bastardized sort of trend-following stochastic",
// or otherwise "WTF?". But it does occasionally seem to show some nice signals
// on trendy currencies. Probably not good on choppy USD/CAD or highly reversing crosses.
//
// PLEASE EXPERIMENT WITH PARAMETERS HEAVILY.
// There is nothing sacred with these.
// They have quite distinct effects depending on the setting, timescale and their values.
extern int minkernel=2;
extern int maxkernel=80;
extern double Exponent=1.0;
int KernelLength;
double kernel[];
double working[];
//----
extern int Period_R=3;
extern int periodAMA=12;
extern int nfast=6;
extern int nslow=60;
extern double G=2.5;
extern int Signal=5;
//extern int SignalShift=0;
//---- buffers
double SMI_Buffer[];
double Signal_Buffer[];
double SM_Buffer[];
double EMA_SM[];
double EMA2_SM[];
double EMA_HQ[];
double EMA2_HQ[];
double HQ_Buffer[];
//+------------------------------------------------------------------+
//| Custom indicator initialization function |
//+------------------------------------------------------------------+
int init()
{
//---- indicators
IndicatorBuffers(8);
SetIndexStyle(0,DRAW_LINE);
SetIndexBuffer(0,SMI_Buffer);
SetIndexStyle(1,DRAW_LINE);
SetIndexBuffer(1,Signal_Buffer);
SetIndexLabel(0,"Michelangelo");
SetIndexLabel(1,"Signal Michelangelo");
SetIndexBuffer(2,SM_Buffer);
SetIndexBuffer(3,EMA_SM);
SetIndexBuffer(4,EMA2_SM);
SetIndexBuffer(5,EMA_HQ);
SetIndexBuffer(6,EMA2_HQ);
SetIndexBuffer(7,HQ_Buffer);
IndicatorShortName("Michelangelo(PL["+minkernel+","+maxkernel+"],"+periodAMA+","+nfast+","+nslow+","+G+","+Signal+")");
//----
KernelLength= maxkernel+1;
initialize_kernel(minkernel,maxkernel,KernelLength,Exponent);
ArrayResize(working,KernelLength);
return(0);
}
//+------------------------------------------------------------------+
//| Custor indicator deinitialization function |
//+------------------------------------------------------------------+
int deinit()
{
//---- TODO: add your code here
//----
return(0);
}
//+------------------------------------------------------------------+
//| Custom indicator iteration function |
//+------------------------------------------------------------------+
int start()
{
int counted_bars=IndicatorCounted();
int limit;
int i;
if(counted_bars<0) return(-1);
if(counted_bars>0) counted_bars--;
limit=Bars-maxkernel-counted_bars;
if(counted_bars>0) counted_bars--;
for(i=limit;i>=0;i--)
{
for(int j=minkernel; j<=maxkernel; j++)
{
double H=High[Highest(NULL,0,MODE_HIGH,j,i)];
double L=Low[Lowest(NULL,0,MODE_LOW,j,i)];
working[j]=(H-L);
}
HQ_Buffer[i]=convolve(working,kernel,minkernel,maxkernel);
for(j=minkernel; j<=maxkernel; j++)
{
H=High[Highest(NULL,0,MODE_HIGH,j,i)];
L=Low[Lowest(NULL,0,MODE_LOW,j,i)];
double C= Close[i];
//----
if (C < L) C=L;
if (C > H) C=H;
//----
working[j]=C - (H+L)/2.0;
}
SM_Buffer[i]=convolve(working,kernel,minkernel,maxkernel);
}
KaufmanOnArray(limit, SM_Buffer, EMA_SM, periodAMA, nfast, nslow, G);
KaufmanOnArray(limit, HQ_Buffer, EMA_HQ, periodAMA, nfast, nslow, G);
EMAPredictiveSmoothOnArray(limit, Period_R, Period_R, EMA_SM, EMA2_SM);
EMAPredictiveSmoothOnArray(limit, Period_R, Period_R, EMA_HQ, EMA2_HQ);
//----
for(i=limit-1;i>=0;i--)
{
double val=100*EMA2_SM[i]/0.5/EMA2_HQ[i];
if (val > 100.0) val=100.0;
if (val < -100.0) val=-100.0;
SMI_Buffer[i]= val;
}
EMAOnArray(limit,2.0/(Signal+1.0),SMI_Buffer,Signal_Buffer);
for(i=limit-1; i>= 0; i--)
{
val=Signal_Buffer[i];
if (val > 100.0) val=100.0;
if (val < -100.0) val=-100.0;
Signal_Buffer[i]=val;
}
return(0);
}
//+------------------------------------------------------------------+
void KaufmanOnArray(int N, double input[], double& output[], int periodAMA, int nfast, int nslow, double G)
{
// perform a Kaufman moving average on input[], saving to output[]
double slowSC=(2.0 /(nslow+1));
double fastSC=(2.0 /(nfast+1));
int i;
double AMA0, AMA, signal, noise, ER, dSC,ERSC,wlxSSC;
// double noise,noise0,AMA,AMA0,signal,ER;
int nmax=N - periodAMA-1;
//----
AMA0=input[nmax+1];
for(i=nmax; i>=0; i--)
{
// loop down
signal=MathAbs(input[i]-input[i+periodAMA]);
noise=0;
for(int j=0;j<periodAMA;j++)
{
noise=noise+MathAbs(input[i+j]-input[i+j+1]);
}
if (noise < Point) noise=Point; // minimum 1 pip noise
ER =signal/noise;
dSC=(fastSC-slowSC);
ERSC=ER*dSC;
wlxSSC=ERSC+slowSC;
AMA=AMA0+(MathPow(wlxSSC,G)*(input[i]-AMA0));
output[i]=AMA;
AMA0=AMA;
}
for(i=N; i > nmax;i--)
{
output[i]=input[i];
}
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void EMAPredictiveSmoothOnArray(int N, double L, double Lfinal, double input[], double& output[])
{
//
// This "predictive/smoothed" EMA is very much like the HMA (hull MA).
// This particular subroutine specializes to a single "L" (input length
// is short length), and no 'time ahead'.
//
// Idea: do an EMA with lengths L and 2*L, and extrapolate from difference.
// That is a 'zero-lag' estimator of position, but has noise. Then
// Do EMA with length sqrt(Lfinal) for final smoothing.
double fastema[], slowema[], difference[];
ArrayResize(fastema,N);
ArrayResize(slowema,N);
ArrayResize(difference,N);
//----
double fastp, finalp;
//----
fastp=2.0/(1.0+L);
finalp=2.0/(1.0+MathSqrt(Lfinal));
EMAOnArray(N,fastp,input,fastema);
EMAOnArray(N,fastp,fastema,slowema);
for(int i=N; i>=0; i--)
{
difference[i]=2.0*fastema[i] - slowema[i];
}
EMAOnArray(N,finalp,difference,output);
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void EMAOnArray(int N, double p, double input[], double& output[])
{
// Perform an "EMA" on array input[] with mixing parameter 'p'
// 0 < p < 1.
//
// p, conventionally is 2.0/(L+1.0) where L is the 'length' parameter.
// In an EMA, the length and thus 'p' need not be integers.
// initial value is input[N-1], and will set output[N-1] down to output[0].
//
double omp=1.0-p;
double ema=input[N-1];
for(int i=N-1; i>=0; i--)
{
double v=input[i];
ema=p*v + omp*ema;
output[i]=ema;
}
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
void initialize_kernel(int from, int to, int KernelLength, double PowerExponent)
{
double kernelsum;
ArrayResize(kernel,KernelLength);
//----
kernelsum=0.0;
for(int i=from; i<=to; i++)
{
kernel[i]=MathPow( (i)*0.01, -PowerExponent);
kernelsum+=kernel[i];
}
for(i=from; i<=to; i++)
{
kernel[i]=kernel[i]/kernelsum;
}
}
//+------------------------------------------------------------------+
//| |
//+------------------------------------------------------------------+
double convolve(double array[], double kernel[], int from, int to)
{
// return sum(i=0..n-1) array[i]*kernel[i]
// conventionally kernel[*] sums to 1, but this is not enforced here.
double sum=0.0;
for(int i=from; i<to; i++)
sum+=array[i]*kernel[i];
//----
return(sum);
}
//+------------------------------------------------------------------+
Comments