Michelangelo_v2

Author: Copyright � 2005, Matt Kennel
Miscellaneous
Implements a curve of type %1
0 Views
0 Downloads
0 Favorites
Michelangelo_v2
//+------------------------------------------------------------------+
//|                                               Michelangelo.mq4   |
//|                      Copyright © 2005, Matt Kennel               |
//|                                                                  |
//|                                                                  |
//|  Algorithm:  Apply a H/L indicator like SMI, avg'd w/ power law  |
//|              lengths.   Then apply a Kaufman AMA filter.         |
//|              Then a 'signal' EMA.  Use crossover of this as      |
//|              potential trading signal.                           |
//|                                                                  |
//|  Idea:       Try to stay on the side of a trend but reverse      |
//|              quickly if there is a breakout.  KaufmanAMA can     |
//|              be made sensitive to those.                         |
//|                                                                  |
//+------------------------------------------------------------------+
#property copyright "Copyright © 2005, Matt Kennel"
#property link      "http://www.metatrader.org"
//----
#property indicator_separate_window
#property indicator_buffers 2
#property indicator_color1 White
#property indicator_color2 Red
#property indicator_level1 0
//---- input parameters
// Try these on M30 charts on trendy currencies.
// THESE PARAMETERS ARE NOT OPTIMIZED BY ANY MEANS. 
//
// Brief run-down.  Structure is derived from "SMI" indicator. 
//
// The first part, minkernel, maxkernel, and exponent
// correspond to the power-law averaging of relative position of self to 
// highs and lows.   The underlying statistic is sort of like a "stochastic",
// the purpose of the averaging is to not be as dependent on a single, fixed lookback.
// 
// The relative position and range series (kept separate here) are each subjected
// to a Kaufman adaptive moving average.  This AMA computes an internal 'signal to noise'
// ratio to see if it is choppy (no consistent trend), in which case the smoothing is strong
// and laggy, or if it feels like a continuing trend, in which case the smoothing is light
// and fast.  Parameters here are "periodAMA", which is the lookback for S/N, nfast, and nslow
// which control the range between fastest and slowest smoothing, and "G".  This is an exponent
// which, for larger values than '1', more greatly emphasize the high S/N versus low.  In practice,
// this means that for larger 'G', there are more flat periods, and then more sensitive to breakouts.
//
// After the KaufmanAMA filtering, the two series are 
// "predictively EMA filtered" (similar to a Hull MA), with parameter Period_R,
// and then divided to form the main indicator line in white.
//
// Finally, this indicator line is filtered with a conventional EMA with period 'Signal'
// to give the red signal line.  Trading signals are generally a crossover of white 
// with red, with the slope of the white in the proper direction.    This will probably
// require intra-bar consideration for breakouts when used in real-time trading. 
//
// Best nutshell description is "a bastardized sort of trend-following stochastic",
// or otherwise "WTF?".  But it does occasionally seem to show some nice signals
// on trendy currencies.   Probably not good on choppy USD/CAD or highly reversing crosses. 

//
// PLEASE EXPERIMENT WITH PARAMETERS HEAVILY.
// There is nothing sacred with these. 
// They have quite distinct effects depending on the setting, timescale and their values.
extern int       minkernel=2;
extern int       maxkernel=80;
extern double    Exponent=1.0;
int    KernelLength;
double kernel[];
double working[];
//----
extern int       Period_R=3;
extern int       periodAMA=12;
extern int       nfast=6;
extern int       nslow=60;
extern double    G=2.5;
extern int       Signal=5;
//extern int       SignalShift=0;
//---- buffers
double SMI_Buffer[];
double Signal_Buffer[];
double SM_Buffer[];
double EMA_SM[];
double EMA2_SM[];
double EMA_HQ[];
double EMA2_HQ[];
double HQ_Buffer[];
//+------------------------------------------------------------------+
//| Custom indicator initialization function                         |
//+------------------------------------------------------------------+
int init()
  {
//---- indicators
   IndicatorBuffers(8);
   SetIndexStyle(0,DRAW_LINE);
   SetIndexBuffer(0,SMI_Buffer);
   SetIndexStyle(1,DRAW_LINE);
   SetIndexBuffer(1,Signal_Buffer);
   SetIndexLabel(0,"Michelangelo");
   SetIndexLabel(1,"Signal Michelangelo");
   SetIndexBuffer(2,SM_Buffer);
   SetIndexBuffer(3,EMA_SM);
   SetIndexBuffer(4,EMA2_SM);
   SetIndexBuffer(5,EMA_HQ);
   SetIndexBuffer(6,EMA2_HQ);
   SetIndexBuffer(7,HQ_Buffer);
   IndicatorShortName("Michelangelo(PL["+minkernel+","+maxkernel+"],"+periodAMA+","+nfast+","+nslow+","+G+","+Signal+")");
//----
   KernelLength= maxkernel+1;
   initialize_kernel(minkernel,maxkernel,KernelLength,Exponent);
   ArrayResize(working,KernelLength);
   return(0);
  }
//+------------------------------------------------------------------+
//| Custor indicator deinitialization function                       |
//+------------------------------------------------------------------+
int deinit()
  {
//---- TODO: add your code here
//----
   return(0);
  }
//+------------------------------------------------------------------+
//| Custom indicator iteration function                              |
//+------------------------------------------------------------------+
int start()
  {
   int    counted_bars=IndicatorCounted();
   int limit;
   int i;
   if(counted_bars<0) return(-1);
   if(counted_bars>0) counted_bars--;
   limit=Bars-maxkernel-counted_bars;
   if(counted_bars>0) counted_bars--;
   for(i=limit;i>=0;i--)
     {
        for(int j=minkernel; j<=maxkernel; j++) 
        {
         double H=High[Highest(NULL,0,MODE_HIGH,j,i)];
         double L=Low[Lowest(NULL,0,MODE_LOW,j,i)];
         working[j]=(H-L);
        }
      HQ_Buffer[i]=convolve(working,kernel,minkernel,maxkernel);
        for(j=minkernel; j<=maxkernel; j++) 
        {
         H=High[Highest(NULL,0,MODE_HIGH,j,i)];
         L=Low[Lowest(NULL,0,MODE_LOW,j,i)];
         double C= Close[i];
//----
         if (C < L) C=L;
         if (C > H) C=H;
//----
         working[j]=C - (H+L)/2.0;
        }
      SM_Buffer[i]=convolve(working,kernel,minkernel,maxkernel);
     }
   KaufmanOnArray(limit, SM_Buffer, EMA_SM, periodAMA, nfast, nslow, G);
   KaufmanOnArray(limit, HQ_Buffer, EMA_HQ, periodAMA, nfast, nslow, G);
   EMAPredictiveSmoothOnArray(limit, Period_R, Period_R, EMA_SM, EMA2_SM);
   EMAPredictiveSmoothOnArray(limit, Period_R, Period_R, EMA_HQ, EMA2_HQ);
//----
   for(i=limit-1;i>=0;i--)
     {
      double val=100*EMA2_SM[i]/0.5/EMA2_HQ[i];
      if (val > 100.0) val=100.0;
      if (val < -100.0) val=-100.0;
      SMI_Buffer[i]= val;
     }
   EMAOnArray(limit,2.0/(Signal+1.0),SMI_Buffer,Signal_Buffer);
     for(i=limit-1; i>= 0; i--) 
     {
      val=Signal_Buffer[i];
      if (val > 100.0) val=100.0;
      if (val < -100.0) val=-100.0;
      Signal_Buffer[i]=val;
     }
   return(0);
  }
//+------------------------------------------------------------------+
  void KaufmanOnArray(int N, double input[], double& output[], int periodAMA, int nfast, int nslow, double G) 
  {
   // perform a Kaufman moving average on input[], saving to output[]
   double slowSC=(2.0 /(nslow+1));
   double fastSC=(2.0 /(nfast+1));
   int    i;
   double AMA0, AMA, signal, noise, ER, dSC,ERSC,wlxSSC;
   //  double noise,noise0,AMA,AMA0,signal,ER;
   int nmax=N - periodAMA-1;
//----
   AMA0=input[nmax+1];
     for(i=nmax; i>=0; i--) 
     {
      // loop down
      signal=MathAbs(input[i]-input[i+periodAMA]);
      noise=0;
      for(int j=0;j<periodAMA;j++)
        {
         noise=noise+MathAbs(input[i+j]-input[i+j+1]);
        }
      if (noise < Point) noise=Point; // minimum 1 pip noise
      ER =signal/noise;
      dSC=(fastSC-slowSC);
      ERSC=ER*dSC;
      wlxSSC=ERSC+slowSC;
      AMA=AMA0+(MathPow(wlxSSC,G)*(input[i]-AMA0));
      output[i]=AMA;
      AMA0=AMA;
     }
     for(i=N; i > nmax;i--) 
     {
      output[i]=input[i];
     }
  }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
  void EMAPredictiveSmoothOnArray(int N, double L, double Lfinal, double input[], double& output[]) 
  {
   //
   // This "predictive/smoothed" EMA is very much like the HMA (hull MA).
   // This particular subroutine specializes to a single "L" (input length
   // is short length), and no 'time ahead'.
   // 
   // Idea: do an EMA with lengths L and 2*L, and extrapolate from difference.
   // That is a 'zero-lag' estimator of position, but has noise.  Then
   // Do EMA with length sqrt(Lfinal) for final smoothing.
   double fastema[], slowema[], difference[];
   ArrayResize(fastema,N);
   ArrayResize(slowema,N);
   ArrayResize(difference,N);
//----
   double fastp, finalp;
//----
   fastp=2.0/(1.0+L);
   finalp=2.0/(1.0+MathSqrt(Lfinal));
   EMAOnArray(N,fastp,input,fastema);
   EMAOnArray(N,fastp,fastema,slowema);
     for(int i=N; i>=0; i--) 
     {
      difference[i]=2.0*fastema[i] - slowema[i];
     }
   EMAOnArray(N,finalp,difference,output);
  }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
  void EMAOnArray(int N, double p, double input[], double& output[]) 
  {
   // Perform an "EMA" on array input[] with mixing parameter 'p'
   // 0 < p < 1.
   //
   // p, conventionally is 2.0/(L+1.0) where L is the 'length' parameter.
   // In an EMA, the length and thus 'p' need not be integers.
   // initial value is input[N-1], and will set output[N-1] down to output[0].
   //
   double omp=1.0-p;
   double ema=input[N-1];
     for(int i=N-1; i>=0; i--) 
     {
      double v=input[i];
      ema=p*v + omp*ema;
      output[i]=ema;
     }
  }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
  void initialize_kernel(int from, int to, int KernelLength, double PowerExponent) 
  {
   double kernelsum;
   ArrayResize(kernel,KernelLength);
//----
   kernelsum=0.0;
     for(int i=from; i<=to; i++) 
     {
      kernel[i]=MathPow( (i)*0.01, -PowerExponent);
      kernelsum+=kernel[i];
     }
     for(i=from; i<=to; i++) 
     {
      kernel[i]=kernel[i]/kernelsum;
     }
  }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
  double convolve(double array[], double kernel[], int from, int to) 
  {
   // return sum(i=0..n-1) array[i]*kernel[i]
   // conventionally kernel[*] sums to 1, but this is not enforced here.
   double sum=0.0;
   for(int i=from; i<to; i++)
      sum+=array[i]*kernel[i];
//----
   return(sum);
  }
//+------------------------------------------------------------------+

Comments