Holts_double_exponential_smoothing_trend

Author: © mladen, 2016, MetaQuotes Software Corp.
Price Data Components
Miscellaneous
It issuies visual alerts to the screenIt sends emailsIt plays sound alerts
0 Views
0 Downloads
0 Favorites
Holts_double_exponential_smoothing_trend
ÿþ//------------------------------------------------------------------

#property copyright "© mladen, 2016, MetaQuotes Software Corp."

#property link      "www.forex-tsd.com, www.mql5.com"

//------------------------------------------------------------------

#property indicator_separate_window

#property indicator_buffers 4

#property indicator_plots   1

#property indicator_label1  "Holt's trend"

#property indicator_type1   DRAW_FILLING

#property indicator_color1  clrLimeGreen,clrSandyBrown



//

//

//

//

//



enum enPrices

{

   pr_close,      // Close

   pr_open,       // Open

   pr_high,       // High

   pr_low,        // Low

   pr_median,     // Median

   pr_typical,    // Typical

   pr_weighted,   // Weighted

   pr_average,    // Average (high+low+open+close)/4

   pr_medianb,    // Average median body (open+close)/2

   pr_tbiased,    // Trend biased price

   pr_tbiased2,   // Trend biased (extreme) price

   pr_haclose,    // Heiken ashi close

   pr_haopen ,    // Heiken ashi open

   pr_hahigh,     // Heiken ashi high

   pr_halow,      // Heiken ashi low

   pr_hamedian,   // Heiken ashi median

   pr_hatypical,  // Heiken ashi typical

   pr_haweighted, // Heiken ashi weighted

   pr_haaverage,  // Heiken ashi average

   pr_hamedianb,  // Heiken ashi median body

   pr_hatbiased,  // Heiken ashi trend biased price

   pr_hatbiased2  // Heiken ashi trend biased (extreme) price

};



input double   EstimatePeriod  = 14.33;     // Estimation component period

input double   TrendPeriod     = 10;        // Trend component period

input enPrices Price           = pr_close;  // Price

input bool     AlertsOn        = false;     // Turn alerts on?

input bool     AlertsOnCurrent = true;      // Alert on current bar?

input bool     AlertsMessage   = true;      // Display messageas on alerts?

input bool     AlertsSound     = false;     // Play sound on alerts?

input bool     AlertsEmail     = false;     // Send email on alerts?

input bool     AlertsNotify    = false;     // Send push notification on alerts?



double avg[],worku[],workd[],trend[];



//------------------------------------------------------------------

//

//------------------------------------------------------------------

//

//

//

//

//



int OnInit()

{

   SetIndexBuffer(0,worku,INDICATOR_DATA);

   SetIndexBuffer(1,workd,INDICATOR_DATA);

   SetIndexBuffer(2,avg  ,INDICATOR_CALCULATIONS);

   SetIndexBuffer(3,trend,INDICATOR_CALCULATIONS);

   IndicatorSetString(INDICATOR_SHORTNAME,"Holt's double exponential smoothing trend("+(string)EstimatePeriod+","+(string)TrendPeriod+")");

   return(0);

}



//------------------------------------------------------------------

//

//------------------------------------------------------------------

//

//

//

//

//



int OnCalculate(const int rates_total,const int prev_calculated,

                const datetime &time[],

                const double &open[],

                const double &high[],

                const double &low[],

                const double &close[],

                const long &TickVolume[],

                const long &Volume[],

                const int &Spread[])

{

   if (Bars(_Symbol,_Period)<rates_total) return(-1);

   

   //

   //

   //

   //

   //

      

   double alpha=2.0/(1.0+EstimatePeriod),gamma=2.0/(1.0+TrendPeriod);

      int i=(int)MathMax(prev_calculated-1,0); for (; i<rates_total && !_StopFlag; i++)

      {

         double price = getPrice(Price,open,close,high,low,i,rates_total);

            avg[i]   = (i>0) ? alpha*price+(1-alpha)*(avg[i-1]+worku[i-1])  : price;

            worku[i] = (i>0) ? gamma*(avg[i]-avg[i-1])+(1-gamma)*worku[i-1] : 0;

            workd[i] = 0;

            trend[i] = (worku[i]>0) ? 1 : (worku[i]<0) ? 2 : (i>0) ? trend[i-1] : 0;

            

      }

   manageAlerts(time,trend,rates_total);      

   return(i);

}



//------------------------------------------------------------------

//

//------------------------------------------------------------------

//

//

//

//

//



void manageAlerts(const datetime& time[], double& ttrend[], int bars)

{

   if (!AlertsOn) return;

      int whichBar = bars-1; if (!AlertsOnCurrent) whichBar = bars-2; datetime time1 = time[whichBar];

      if (ttrend[whichBar] != ttrend[whichBar-1])

      {

         if (ttrend[whichBar] == 1) doAlert(time1,"up");

         if (ttrend[whichBar] == 2) doAlert(time1,"down");

      }         

}   



//

//

//

//

//



void doAlert(datetime forTime, string doWhat)

{

   static string   previousAlert="nothing";

   static datetime previousTime;

   string message;

   

   if (previousAlert != doWhat || previousTime != forTime) 

   {

      previousAlert  = doWhat;

      previousTime   = forTime;



      //

      //

      //

      //

      //



      message = _Symbol+" at "+TimeToString(TimeLocal(),TIME_SECONDS)+" Holt's double exponential smoothing state changed to "+doWhat;

         if (AlertsMessage) Alert(message);

         if (AlertsEmail)   SendMail(_Symbol+" Holt's double exponential smoothing",message);

         if (AlertsNotify)  SendNotification(message);

         if (AlertsSound)   PlaySound("alert2.wav");

   }

}



//------------------------------------------------------------------

//

//------------------------------------------------------------------

//

//

//

//

//

//



#define priceInstances 1

double workHa[][priceInstances*4];

double getPrice(int tprice, const double& open[], const double& close[], const double& high[], const double& low[], int i,int _bars, int instanceNo=0)

{

  if (tprice>=pr_haclose)

   {

      if (ArrayRange(workHa,0)!= _bars) ArrayResize(workHa,_bars); instanceNo*=4;

         

         //

         //

         //

         //

         //

         

         double haOpen;

         if (i>0)

                haOpen  = (workHa[i-1][instanceNo+2] + workHa[i-1][instanceNo+3])/2.0;

         else   haOpen  = (open[i]+close[i])/2;

         double haClose = (open[i] + high[i] + low[i] + close[i]) / 4.0;

         double haHigh  = MathMax(high[i], MathMax(haOpen,haClose));

         double haLow   = MathMin(low[i] , MathMin(haOpen,haClose));



         if(haOpen  <haClose) { workHa[i][instanceNo+0] = haLow;  workHa[i][instanceNo+1] = haHigh; } 

         else                 { workHa[i][instanceNo+0] = haHigh; workHa[i][instanceNo+1] = haLow;  } 

                                workHa[i][instanceNo+2] = haOpen;

                                workHa[i][instanceNo+3] = haClose;

         //

         //

         //

         //

         //

         

         switch (tprice)

         {

            case pr_haclose:     return(haClose);

            case pr_haopen:      return(haOpen);

            case pr_hahigh:      return(haHigh);

            case pr_halow:       return(haLow);

            case pr_hamedian:    return((haHigh+haLow)/2.0);

            case pr_hamedianb:   return((haOpen+haClose)/2.0);

            case pr_hatypical:   return((haHigh+haLow+haClose)/3.0);

            case pr_haweighted:  return((haHigh+haLow+haClose+haClose)/4.0);

            case pr_haaverage:   return((haHigh+haLow+haClose+haOpen)/4.0);

            case pr_hatbiased:

               if (haClose>haOpen)

                     return((haHigh+haClose)/2.0);

               else  return((haLow+haClose)/2.0);        

            case pr_hatbiased2:

               if (haClose>haOpen)  return(haHigh);

               if (haClose<haOpen)  return(haLow);

                                    return(haClose);        

         }

   }

   

   //

   //

   //

   //

   //

   

   switch (tprice)

   {

      case pr_close:     return(close[i]);

      case pr_open:      return(open[i]);

      case pr_high:      return(high[i]);

      case pr_low:       return(low[i]);

      case pr_median:    return((high[i]+low[i])/2.0);

      case pr_medianb:   return((open[i]+close[i])/2.0);

      case pr_typical:   return((high[i]+low[i]+close[i])/3.0);

      case pr_weighted:  return((high[i]+low[i]+close[i]+close[i])/4.0);

      case pr_average:   return((high[i]+low[i]+close[i]+open[i])/4.0);

      case pr_tbiased:   

               if (close[i]>open[i])

                     return((high[i]+close[i])/2.0);

               else  return((low[i]+close[i])/2.0);        

      case pr_tbiased2:   

               if (close[i]>open[i]) return(high[i]);

               if (close[i]<open[i]) return(low[i]);

                                     return(close[i]);        

   }

   return(0);

}

Comments

Markdown supported. Formatting help

Markdown Formatting Guide

Element Markdown Syntax
Heading # H1
## H2
### H3
Bold **bold text**
Italic *italicized text*
Link [title](https://www.example.com)
Image ![alt text](image.jpg)
Code `code`
Code Block ```
code block
```
Quote > blockquote
Unordered List - Item 1
- Item 2
Ordered List 1. First item
2. Second item
Horizontal Rule ---